

B.Sc. (PHYSICS) SEMESTER-I

DETAILED CURRICULUM:

Core course- PHYSICS PHY-CC-103(Theory) PHY-CC-104(Practical)

- The Course content has been designed on **Semester pattern**.
- There shall be **01 Theory** papers having **04 unit**(4 lectures in a week set up by departments)
- There shall be **02 Practical** 4 lectures in a week set up by departments.
- There shall be **01 Theory** paper of **70 marks** and 2:30 hours duration in University Examination.
- There shall be **01 Practical Paper** of **50 marks** and 03:00 hours duration in University Examination.
- There shall be Continuous Internal Evaluation of 30 Marks for theory course.

Subject Code	Course Type	Paper No.	Title of Paper	TOTAL MARKS EXT.+INT*= TOTAL	Passing Standarads EXT.+INT*= TOTAL	CREDITS	TOTAL TEACHING HOURS (In 15weeks)	Exam Duration (Hours)
22839	Core Course Theory -103	Paper PHY- CC- 103	Mechanics and Optics	70 + 30 * = 100	28+12* =40 marks	04	60 hrs	2.5
22840	Core Course Practic al-104	Paper PHY- CC- 104	PRACTICAL PHYSICS-1	EXT 50	20 marks	02	60 hrs	3
		TOTAL		120 + 30 = 150		06	120 hrs	
Internal	Internal Marks							

Internal	Marks
Test	15
Assignment / Presentation	10
Seminar / Presence	05
Total	30

B.Sc. (PHYSICS) SEMESTER-II

DETAILED CURRICULUM:

Core course- PHYSICS PHY-CC-203(Theory) PHY-CC-204(Practical)

- The Course content has been designed on **Semester pattern**.
- There shall be **01 Theory** papers having **04 unit**(4 lectures in a week set up by departments)
- There shall be **02 Practical** 4 lectures in a week set up by departments.
- There shall be **01 Theory** paper of **70 marks** and 2:30 hours duration in University Examination.
- There shall be **01 Practical Paper** of **50 marks** and 03:00 hours duration in University Examination.
- There shall be Continuous Internal Evaluation of 30 Marks for theory course.

Subject Code	Course Type	Paper No.	Title of Paper	TOTAL MARKS EXT.+INT*= TOTAL	Passing Standarads EXT.+INT* = TOTAL	TOTAL TEACHING HOURS(In 15weeks)	Exam Duration (Hours)	CREDITS
229.41	Core	PHY-	Electricity	70,20* 100	29,12*	60 hrs	2.5	04
22841	Theory-203	CC- 203	Modern Physics	70+30** =100	=40 marks			
	Core	Paper	PRACTICAL	EXT 50	20 marks	60 hrs	3	02
22842	Course	PHY-	PHYSICS-2					
	Practical-204	CC- 204						
		TOTAL		120+30=150		120 hrs		06
Internal		Marks		•		·	•	
Test		15						
Assignment / Presentation		10						
Seminar / Presence		05						
Total		30						

 $\stackrel{\land}{\succ}$

Examples

MAHARAJA KRISHNAKUMARSINHJI BHAVNAGAR UNIVERSITY (With effect from Academic Year 2020-2021)

B.Sc. Physics SEMESTER-1

Course No.- PHY-CC- 103(Theory)Title of the Paper : Mechanics and OpticsMarks: Semester End Examination:70Internal Examination:30TOTAL100

Credits: 04

Unit	Detailed Syllabus	Teaching	Marks/
		Hours	Weight
1	Vector and Classical Mechanics	15	18
	Surface area as vector		
	 Scalar triple product 		
	 Geometrical interpretation of scalar triple product 		
	 Rotational behavior of scalar triple product 		
	Vector triple product		
	Reciprocal vector		
	The derivative of a vector		
	Differentiation of Vector		
	 Formulae of Differentiation of Vector 		
	 Gradient of a Scalar field 		
	Divergence of a Vector field		
	Curl of a Vector field		
	Classical Mechanics		
	Newton's Laws of motion		
	Frames of reference		
	Mechanics of a particle		
	> Examples		10
2	Elastisity	15	18
	Definition of stress and strain		
	Hooke's law and elastic constant		
	Strain energy		
	 Restoring couple- required to produce torsion and elastic 		
	wire with derivation		
	 Torsional pendulum 		
	Bending of beam and cantilever		
	Relation between isothermal and adiabatic elasticities of		
	gases		
	Poisson's ratio		
	Determination of Poisson's ratio for rubber		

Searl's relation between elastic constant and derivations

MAHARAJA KRISHNAKUMARSINHJI BHAVNAGAR UNIVERSITY (With effect from Academic Year 2020-2021)

3	Wave and Oscillations	15	17
	Traveling Waves		
	Speed of propagation of waves in a stretched string longitudinal waves in a bar		
	Plane waves in a fluid		
	Transmission of energy by a travelling wave		
	Simple Harmonic Motion		
	Characteristics of simple harmonic motion		
	Graphical Method: Composition of two linear simple		
	harmonic motions in the same direction and at right angles with each other		
	➤ Analytical Method : Composition of two linear simple		
	harmonic motions in the same direction and at right angles		
	with each other		
	Lissaious figures		
	Compound pendulum and derivation of time period		
	> Examples		
4	Optics	15	17
	Interference and Diffraction		
	 Condition of interference 		
	➢ Interference by thin film		
	Interference due to transmitted light		
	➤ Interference by variable thickness (wedge-shaped) film		
	> Types of interference : Wavefront division and Amplitude		
	division		
	➢ Wavefront division :Fresnel Biprism		
	Amplitude division : Newton's ring		
	Fresnel's Assumptions		
	 Fresnel Half Period Zones and Rectilinear propagation of light 		
	Positive and Negative Zone plate		
	 Fraunhoffer diffraction at a single slit 		
	\blacktriangleright Intensity distribution in diffraction pattern of a single slit		
	In Fraunhofter diffraction		
		60hours	70marks
		00110UI S	7 VIIIAI 185

Course Outcome - Learner will able to learn the basic conceptual and theoretical aspects of Mechanics and Optics and their applications.

B.Sc. Physics SEMESTER-1

Credits: 02

Course No.- PHY-CC- 104Title of the Paper: Physics PracticalMarking Scheme : Semester End Examination:50TOTAL50

DETAILED CURRICULUM FOR PRACTICAL

[Based on paper P-103]

Students have to prepare their Practical journals of Physics for Laboratory work and they have to submit certified journals in the University practical exams. Students are not allowed in the laboratory without certified journals in the University practical examination.

Detailed Syllabus for Physics practical	Teaching Hours
SECTION A(General Physics)	
1. To determine Young's modulus of a given wire.	02
2. To determine expansion coefficient of pressure of constant volume air	02
thermometer and to determine absolute zero temperature and	
atmospheric pressure.	
3. To determine moment of inertia of body with different shapes using bi-	02
filler suspension.	
4. Calibration of spectrometer with help of prism spectra.	02
5. To determine wavelength of sodium light using Newton's ring.	02
6. To determine refractive index of liquid by using liquid lens method.	02
7. To determine 'g' by bar pendulum .	02

Detailed Syllabus for Physics practical	Teaching Hours
SECTION B(Electricity and Magnetism)	
1. To determine wattage and temperature of a given lamp.	02
2. To verify tangent's law using tangent galvanometer.	02
3. To determine low resistance using projection method.	02
4. To determine magnetic moment and pole strength using deflection magnetometer	02
5. To study bridge rectifier.	02
6. To determine Impedance of coil using series L-R ac circuit.	02
7. To study characteristics of thermistor.	02
8. To determine resistance of galvanometer and current sensitivity by half deflection method.	02

References Books

- 1) Mathematical physics by H.K.Das &Dr. Rama Verma
- 2) Mathematical physics by Rajput
- 3) Nirav college physics paper :101
- 4) Nirav college physics paper :102
- 5) Introduction to classical mechanics by R.G.Takwale & P.S. Puranik
- 6) Classical Mechanics & Properties of Matter by A.B.Gupta
- 7) A textbook of optics by Dr. N. Subrahmanyam & Brij Lal
- 8) Optics by Singh & Agarwal
- 9) Properties of matter by D.S.Mathur
- 10) Electric circuit analysis by Soni & Gupta
- 11) Nirav college physics paper :202
- 12) Engineering physics by Dr. M.N.Avadhanulu (S.CHAND'S)
- 13) Advanced practical physics by Chauhan And Singh
- 14) B.Sc.Practical Physics by C L Arora
- **15**) Practical Physics by Kumar and Gupta

MAHARAJA KRISHNAKUMARSINHJI BHAVNAGAR UNIVERSITY (With effect from Academic Year 2020-2021)

B.Sc. Physics SEMESTER-2

Course No.- PHY-CC- 203(Theory)Title of the Paper : Electricity Magnetism and Modern PhysicsCredits: 04Marks: Semester End Examination:70Internal Examination:30TOTAL100

Unit	Detailed Syllabus	Teaching Hours	Marks/ Weight
1	AC Bridge and DC Circuit	15	18
	➢ A.C.Bridge introduction and general Bridge balance		
	equation		
	Maxwell Bridge		
	> Owen's Bridge		
	De-sautty Bridge		
	Anderson Bridge		
	R.L. Circuit in series growth and decay		
	R.C. circuit in series growth and decay		
	Series LCR circuit and its analysis and condition of		
	oscillation		
	Quality factor		
	➢ Examples		
2	Magnetism	15	18
	 Classification of Magnetic Materials: Diamagnetic, 		
	Paramagnetic, Ferromagnetic		
	Magnetic Permeability		
	Magnetic Properties of materials		
	Langevin's theory for diamagnetic materials(Classical)		
	 Weiss Theory of paramagnetism 		
	Paramagnetic Susceptibility of a Solid Substances		
	 Hysteresis loop for ferromagnetic substances 		
	 Ferromagnetic domains 		
	➤ Tangent law		
	Hard and Soft Magnetic Materials		
	➢ Examples		
3	Diode Circuits and Modern Physics	15	17
	PN junction diode		
	 Use of diodes in rectifiers 		
	The Half wave Rectifier		
	The Full wave Rectifier		
	The Bridge Rectifier		
	 Definition of filter 		

MAHARAJA KRISHNAKUMARSINHJI BHAVNAGAR UNIVERSITY (With effect from Academic Year 2020-2021)

		60hours	70marks
	➤ Examples		
	\blacktriangleright Mass energy equivalence (E=mc ²)		
	Variation of mass with velocity		
	Addition of velocity		
	> Time dilation		
	 Length contraction 		
	The Lorentz transformation equations		
	Postulates of special theory of relativity		
	with result		
	> The Ether hypothesis and the Michelson-Morley experiment		
	 Galilean transformation equations 		
	Newtonian Relativity		
	Frame of reference		
4	Relativity	15	17
	➢ Examples		
	 Uncertainty principle 		
	De Broglie hypothesis		
	Wien's law and Wien's Displacement law		
	Rayleigh – Jeans law		
	Planck's radiation law		
	Thermal radiation and Black body radiation		
	> Types of filters : Shunt capacitor filter, Series inductor filter		

Course Outcome - Learner will able to learn the basic conceptual and theoretical aspects of Electricity Magnetism and Modern Physics and their applications.

B.Sc. Physics SEMESTER-II

Syllabus for UG B.Sc. Programs Course Course No.- PHY-CC- 204

Credits: 02

Title of the Paper:Physics PracticalMarking Scheme :Semester End Examination:50TOTAL50

DETAILED CURRICULUM FOR PRACTICAL

[Based on paper P- 203]

Students have to prepare their Practical journals of Physics for Laboratory work and they have to submit certified journals in the University practical exams. Students are not allowed in the laboratory without certified journals in the University practical examination.

Detailed Syllabus for Physics	Teaching
	Hours
SECTION A(General Physics)	
1.To determine temperature coefficient of thermal conductivity by Lee's method.	02
2. To determine wavelength of mercury spectral lines with the help of grating method.	02
3.To determine Poisson's ratio of rubber tube.	02
4.To study resonator to determine unknown frequency of tuning fork.	02
5.To determine Melde's tuning fork frequency and to verify laws of vibrating	
string.	02
6.To determine radius of curvature of a given lens and refractive index of glass using optical lever method.	02
7.To determine moment of inertia of a disk using Tortional pendulum.	02
8.To determine Young Modulus 'Y' of the given rectangular bar by Cantilever.	02
SECTION B(Electricity and Magnetism)	
1. To determine resistivity of electrolyte using Koholaraus bridge.	02
2. To determine ratio of magnetic moments of two bar magnets using vibration magnetometer.	02
3. To determine resistance of galvanometer and Leclance cell using P.O.Box Kelvin-Mens methods.	02
4. To study magnetic field of coil using Stuart gee galvanometer.	02
5. To determine self-inductance of a given coil using Anderson bridge.	02
6. To determine ratio of capacity of two capacitors using desauty bridge.	02
7. To study parallel resonance of L.C.R. circuit.	02
8. To study PN junction diode forward characteristics.	02

References Books

- 1) Electricity and Magnetism by D.N.Vasudev
- 2) Electricity and Magnetism by R.Murugeshan
- 3) Elements of Solid State Physics by S.O.Pillai
- 4) Nirav college physics
- 5) Electricity and Electronics by D.C.Tayal
- 6) Electric circuit analysis by Soni & Gupta
- 7) Nirav college physics paper :102
- 8) Modern physics by Murugeshan
- 9) Modern physics by Basier
- 10) Modern physics by Aruldas & P Rajagopal
- 11) Advanced practical physics by Chauhan And Singh
- 12) B.Sc.Practical Physics by C L Arora
- 13) Practical Physics by Kumar and Gupta